Do vasoregulatory mechanisms in exercising human muscle compensate for changes in arterial perfusion pressure?
نویسندگان
چکیده
We tested the hypothesis that vasoregulatory mechanisms completely counteract the effects of sudden changes in arterial perfusion pressure on exercising muscle blood flow. Twelve healthy young subjects (7 female, 5 male) lay supine and performed rhythmic isometric handgrip contractions (2 s contraction/ 2 s relaxation 30% maximal voluntary contraction). Forearm blood flow (FBF; echo and Doppler ultrasound), mean arterial blood pressure (arterial tonometry), and heart rate (ECG) were measured. Moving the arm between above the heart (AH) and below the heart (BH) level during contraction in steady-state exercise achieved sudden approximately 30 mmHg changes in forearm arterial perfusion pressure (FAPP). We analyzed cardiac cycles during relaxation (FBF(relax)). In an AH-to-BH transition, FBF(relax) increased immediately, in excess of the increase in FAPP (approximately 69% vs. approximately 41%). This was accounted for by pressure-related distension of forearm resistance vasculature [forearm vascular conductance (FVC(relax)) increased by approximately 19%]. FVC(relax) was restored by the second relaxation. Continued slow decreases in FVC(relax) stabilized by 2 min without restoring FBF(relax). In a BH-to-AH transition, FBF(relax) decreased immediately, in excess of the decrease in FAPP (approximately 37% vs. approximately 29%). FVC(relax) decreased by approximately 14%, suggesting pressure-related passive recoil of resistance vessels. The pattern of FVC(relax) was similar to that in the AH-to-BH transition, and FBF(relax) was not restored. These data support rapid myogenic regulation of vascular conductance in exercising human muscle but incomplete flow restoration via slower-acting mechanisms. Local arterial perfusion pressure is an important determinant of steady-state blood flow in the exercising human forearm.
منابع مشابه
Rapid vasoregulatory mechanisms in exercising human skeletal muscle: dynamic response to repeated changes in contraction intensity.
We tested the hypothesis that vasoregulatory mechanisms exist in humans that can rapidly adjust muscle blood flow to repeated increases and decreases in exercise intensity. Six men and seven women (age, 24.4+/-1.3 yr) performed continuous dynamic forearm handgrip contractions (1- to 2-s contraction-to-relaxation duty cycle) during repeated step increases and decreases in contraction intensity. ...
متن کاملTaming the "sleeping giant": the role of endothelin-1 in the regulation of skeletal muscle blood flow and arterial blood pressure during exercise.
The cardiovascular response to exercise is governed by a combination of vasodilating and vasoconstricting influences that optimize exercising muscle perfusion while protecting mean arterial pressure (MAP). The degree to which endogenous endothelin (ET)-1, the body's most potent vasoconstrictor, participates in this response is unknown. Thus, in eight young (24 ± 2 yr), healthy volunteers, we ex...
متن کاملSkeletal muscle vasodilatation during maximal exercise in health and disease.
Maximal exercise vasodilatation results from the balance between vasoconstricting and vasodilating signals combined with the vascular reactivity to these signals. During maximal exercise with a small muscle mass the skeletal muscle vascular bed is fully vasodilated. During maximal whole body exercise, however, vasodilatation is restrained by the sympathetic system. This is necessary to avoid hy...
متن کاملPeak skeletal muscle perfusion is maintained in patients with chronic heart failure when only a small muscle mass is exercised.
OBJECTIVES The issue to be resolved was whether peripheral leg blood flow in patients with chronic heart failure (CHF) is reduced by low local flow capacity or as a function of the amount of muscle mass activated during exercise. METHODS AND RESULTS In ten CHF patients (ejection fraction 26 (9)%), and 12 healthy controls central and peripheral circulatory responses were assessed during dynami...
متن کاملMuscle pump does not enhance blood flow in exercising skeletal muscle.
The muscle pump theory holds that contraction aids muscle perfusion by emptying the venous circulation, which lowers venous pressure during relaxation and increases the pressure gradient across the muscle. We reasoned that the influence of a reduction in venous pressure could be determined after maximal pharmacological vasodilation, in which the changes in vascular tone would be minimized. Mong...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 293 5 شماره
صفحات -
تاریخ انتشار 2007